

Konfiguracja Leoni advintec TCP-5D z robotami Kawasaki

Zalecenia sprzętowe:

- Kontroler typu E0x, E4x,
- Wersja oprogramowania zalecana ASE_033300X3X lub nowsza
- Urządzenie Leoni Advintec TCP 5D

Opis funkcjonalny

Instrukcja zawiera informacje dotyczące sposobu konfigurowania urządzenia Leoni TCP-5D z robotem Kawasaki. Urządzenie służy do wyznaczania korekcji narzędzia (funkcje dostępne dla programów napisanych w AS language), w przypadku gdy podczas pracy wymiary lub położenie narzędzia uległy niewielkim zmianom. Do poprawnego działania Leoni wymaga wyznaczenia wzorcowego przejazdu, względem którego zostaną wyliczone korekty (konieczne wyznaczenie punktu TCP zgodnie z *90203-1104 Operation manual*). Monitorowanie średnicy narzędzia działa prawidłowo tylko gdy dane narzędzia zostaną przywrócone do danych, z którymi wykonany został przejazd odniesienia. Zaleca się wykorzystywanie 2 numerów narzędzia. W pierwszym przechowywane są dane oryginalnego narzędzia a w drugim narzędzia skorygowanego. Przed wykonaniem przejazdu pomiarowego należny nadpisać 2 numer narzędzia danymi oryginalnymi.

Korekcja 5D

Korekcja zapewnia kontrole zarówno położenia jak i kąta obrotu narzędzia (z wyjątkiem kąta obrotu wokół osi ciągu narzędzia). Do wykonania pomiaru wykorzystywany jest trzy razy ruch podwójnego koła oraz ruch oscylacyjny. Pomiar może dobywać się tylko i wyłącznie przy poprawnie działającej komunikacji oraz uprzednim wykonaniu ruchu wektorowego. Ruch pomiarowy może zostać wykonany gdy dane z ruchu odniesienia są zapisane w urządzeniu w innym przypadku na urządzeniu wyświetlony zostanie komunikat o błędzie.

Montaż

Bramkę laserową umieścić w zasięgu robota w sposób umożliwiający swobodne operowanie wokół niego. Urządzenie musi być zamontowane na stabilnym podłożu gdyż nawet drgania mogą powodować zakłócenia w działaniu. Otwarta część sensora musi być skierowana w kierunku –X globalnego układu współrzędnych.

Os Z globalnego układu współrzędnych musi być prostopadła do sensora.

Programy pomiarowe muszą się zaczynać gdy oś Z globalnego układu współrzednych, oś Z narzedzia i oś Z sensora sa równoległe. Okregi pomiarowie powinny rozpoczynac się w czerwonej strefie i wykonywac się w kierunku przeciwnym do kierunku ruchu wskazowek zegara parząc na sensor od góry.

Informator Techniczny

Pomoc techniczna dostępna jest na Platformie Internetowej ASTOR – pod adresem platforma.astor.com.pl. Serwis stanowi źródło wiedzy technicznej dostępne 24 godziny na dobę i umożliwia zgłaszania zagadnień serwisowych oraz śledzenia ich stanu. Ogólnopolska linia telefoniczna 12 424 00 88, e-mail: support@astor.com.pl.

Ideowy schemat podłączenia

Konfiguracja komunikacji w protokole Ethernet IP

Kawasaki

- 1. Szczegółowy opis parametrów komunikacji zawarty w dokumentacji *90210-1184D General Fieldbus Operation*.
- 2. Ustawić komunikację według parametrów:

Aux.:Input/Output Signal:Signal	Allocation:Software EtherNet/IP setti 1/ 3
Setting 2	
Instance	2
networkPath	192 . 168 . 1 . 16
TargetConfigConnInstance	1
TargetProducingConnPoint	100
TargetConsumingConnPoint	150
TargetConsumingConnTag	
TargetProducingConnTag	
ProducingDataRate	20
ConsumingDataRate	20
OutputRunProgramHeader	
InputRunProgramHeader	
Undo Next Page	
Input range : [0 - 128]	

Aux.:Input/Output Signal:Signal	Allocation:Software Et	herNet/IP setti 2/ 3
Setting 2		
ProducingConnectionType	4000	
ConsumingConnectionType	4000	
ProducingPriority	0800	
ConsumingPriority	0800	
TransportClass		
TransportType	00	
TimeoutMultiplier	2	
WatchdogTimeoutAction	3	
WatchdogTimeoutReconnectDelay	1000	
HostlPAddr	FFFFFFFF	
Inde Drey Devel Next Deve		
Undo Prev Page Next Page		
Input range : [0x0 - 0xFFFF]		
11700 10000 . [000 000111]		
		-1 h
TEACH Program [Comment]	STEP PC	RUN MOTOR CYCLE
 524	9	
	I I 6 8 1 I	CONDITION REF. SPD
		CHK SPEED
	_	
	L	
Aux.:Input/Output Signal:Signal	Allocation:Software Et	herNet/IP setti 3/3
Setting 2		
InputScannerUffset		
InputScannerSize	14	
OutputScannerOffset		
CharadMomentalZe	14	
QuickConnect	<u>40</u>	
AUTOVOLIDECT		
Undo Prev Page		
Input range : [0 - 2147483647]		

3. Ustawić sygnały dedykowane.

Aux.:Input/Output Signal:Dedicated Input	Signals	8/8
Signal Name	Set/Reset	Signal Number
Target position:First signal No.		1000
EXT. MOTOR OFF	🗌 🗖 DEDICATED 🔽 🤇	CANCEL 0
BRAKE CHECK	🗌 🗖 DEDICATED 🔽 🤇	CANCEL 0
EXT. AXIS LIMIT TCH OPERATION	🗌 🗔 DEDICATED 🔽 🤇	CANCEL 0
Cubic-S Safety Signature Reset	🗌 🗔 DEDICATED 🔽 🤇	CANCEL 0
LEONIsensor input1(16bits)	DEDICATED 🔲 🤇	CANCEL 1673
LEONIsensor input2(16bits)	DEDICATED 🗔 🤇	CANCEL 1689
LEONIsensor input3(16bits)	DEDICATED 🗔 🤇	CANCEL 1705
LEONIsensor input4(16bits)	DEDICATED 🗔 🤇	CANCEL 1721
LEONIsensor input5(16bits)	DEDICATED 🗔 🤇	CANCEL 1737
LEONIsensor input6(16bits)	DEDICATED 🗔 🤇	CANCEL 1753
LEONIsensor input7(16bits)	DEDICATED 🗔 🤇	CANCEL 1769
Undo Prev Page		
Range :[1000-1784, 2001-2900](0:Not Used))	

Aux.:Input/Output Signal:Dedicated Output	Si	mals			13/14
Signal Name	S	et/Reset		Sign	al Number
Device Net Error		DEDICATED	☑	CANCEL	0
Safety Fence Opened		DEDICATED	☑	CANCEL	0
Ext. Axis Disconnect(JT7)		DEDICATED	\checkmark	CANCEL	0
Ext, Axis Disconnect(JT8)		DEDICATED	\checkmark	CANCEL	0
Cubic-S Safety Signature		DEDICATED	\checkmark	CANCEL	0
BRAKE TORQUE ERROR		DEDICATED	\checkmark	CANCEL	0
WCR Monitor Signal	\checkmark	DEDICATED		CANCEL	378
Error reset		DEDICATED	\checkmark	CANCEL	0
LEONIsensor output1(16bits)	\checkmark	DEDICATED		CANCEL	673
LEONIsensor output2(16bits)	\checkmark	DEDICATED		CANCEL	689
LEONIsensor output3(16bits)	☑	DEDICATED		CANCEL	705
LEONIsensor output4(16bits)	☑	DEDICATED		CANCEL	721
Undo Prev Page Next Page					

Leoni

- 1. Wprowadzić parametry w pozycji Setup-->Global-->Bus
 - IP Adress: zgodny z ustawieniami robota, np. 192.168.01.16
 - Subnet mask: 255.255.255.000
 - Gateway: 192.168.001.001
 - Byte Swap: Yes
 - To Comm: 10 [s]
 - Comm delay: 10 [ms]
 - Mirror signals: No

Test komunikacji

1. Sprawdzić stan wejścia 11 (np. i683) w Monitor Signal.

Prawidłowa praca sygnalizowana stanem wysokim wejścia 11 (np. i683).

 Odczytać wartość dziesiętną z wejść LEONIsensor input2(16bits) do LEONIsensor input7(16bits). Prawidłową pracę urządzenia sygnalizuje wartość 30000 na wejściach robota. Jeżeli wartość dziesiętna wynosi 12405 zmienić konfigurację w polu ByteSwype w urządzeniu Leoni. Każda inna wartość świadczy o nie poprawnym działaniu komunikacji.

Zalecane wartości parametrów

Kawasaki

• Tool_no =1

Numer zestawu parametrów odczytywanych z urządzenia Leoni.

- Radius = 15 [mm]
 Promień okręgów wykonywanych podczas przejazdów odniesienia oraz pomiarowych.
 Parametr przyjmuje taką samą wartość w ustawieniach kontrolera Leoni.
- z_lenght = 20 [mm]

Amplituda ruchu oscylacyjnego. Parametr przyjmuje taką samą wartość w ustawieniach kontrolera Leoni.

• ori_lenght = 10 [mm]

Odległość pomiędzy dolnym i górnym kołem pomiarowym. Parametr przyjmuje taką samą wartość w ustawieniach kontrolera Leoni.

• lb_shift =1 [mm]

Określa wartość wektora obniżającego wysokość punktu center dla pierwszego koła pomiarowego (zapewnia przecięcie bariery).

• #center

Punkt przecięcia lasera rozpoczynający programy pomiarowe, przyjmujący wartość we współrzędnych złączowych.

• center

Punkt przecięcia lasera rozpoczynający programy pomiarowe, przyjmujący wartość we współrzędnych globalnych robota (kartezjańskich).

Leoni

Basic

• Tool number =1

Numer zestawu ustawień zapisanych w urządzeniu. Urządzenie może zapisać do 10 zestawów.

• Radius =15 [mm]

Promień okręgów wykonywanych podczas przejazdów odniesienia oraz pomiarowych. Parametr przyjmuje taką samą wartość w ustawieniach robota.

- Z_lenght =20 [mm]
 Amplituda ruchu oscylacyjnego. Parametr przyjmuje taką samą wartość w ustawieniach robota.
 - Orientation length =10 [mm]

Odległość pomiędzy dolnym i górnym kołem pomiarowym. Parametr przyjmuje taką samą wartość w ustawieniach robota

User

• Tool number =1

Wybór numeru zestawu ustawień zapisanych w urządzeniu. Urządzenie może zapisać do 10 zestawów.

 Maximum tolerance =10 [mm] Maksymalne odchylenie od wartości odniesienia. Przekroczenie wartości ustawia błąd 2.

- Maximum orientation tolerance =10 [deg] Maksymalne dopuszczalne odchylenie kątowe od wartości odniesienia. Przekroczenie wartości ustawia błąd 3.
- Maximum tool diameter =10 [mm] Maksymalna średnica narzędzia.

Pozostałe parametry przyjmują wartości zgodnie z dokumentacją *Initial Commissioning of advintec TCP-3D/TCP-6D Measuring Device*.

Procedura wyznaczania punktu center

- 1. Dojechać końcówką narzędzia nad bamką laserową w konfiguracji umożliwiającej swobodny ruch robota.
- 2. Ustawić oś Z narzędzia równolegle stosunku do osi Z robota (np. polecenie do align).
- 3. Ustawić końcówkę narzędzia w miejscu przecięcia wiązek laserowych.
- 4. Sprawdzić czy diody gasną/zapalają się jednocześnie.
- 5. Zapisać punkt jako **center** oraz **#center**.

Skrócony algorytm pracy Leoni TCP-5D oraz robota Kawasaki

- 1. Wyznaczyć poprawne wartości TCP.
- 2. Przeprowadzić inicjalizację kontrolera Leoni program Initial.
- 3. Wyznaczyć korekty pomiędzy bramką laserową a robotem program Vectorrun.
- 4. Wyznaczyć wartości wzorcowe (odniesienia) punktu TCP program *Refrun5d*.
- 5. Uruchomić automatyczną korekcję punktu TCP program Measurerun.

Wartości korekcji zawarto w menu 0304 (Menu-->AUX Function--> AUX. Data Setting --> Tool Coordinates) w zakładce Correction. Zaznaczyć checkbox Enable aby uwzględnić wartość korekcji podczas pracy (w AS language polecenie ENA_TOOLCORRECT).

Polecenia AS language

- COMM_TOOLCORRECT tool_no, TRYB
 Tryb pracy urządzenia: 0 kasowanie błędów, 1 ruch wektorowy, 2 ruch referencyjny, 3 ruch pomiarowy.
- ENA_TOOLCORRECT Robot Nr: Tool Nr, TRUE/FALSE

Przeliczenie punktu TCP zgodnie z wyznaczonymi korektami i uwzględnianie w programie.

- GET_TOOLCORRECT Prog Nr, Korekcja Pobranie wartości korekcji zapisane w Leoni oraz zapis do zmiennej Korekcja.
- SET_TOOLCORRECT Tool Nr,Korekcja, ON/OFF
 - Zapis wartości w korekcji w menu 0304.

ON – wartość korekcji można sprawdzić w menu 0304

OFF – Wartość korekcji używana jest tylko do wykonywania przejazdów pomiarowych nie można jej sprawdzić.

Ruch odniesienia/ruch pomiarowy

Ruchy te są identyczne pod względem trajektorii jak i komunikacji. Podczas ruchu odniesienia w pamięci rejestrowane są rzeczywiste położenie narzędzia oraz jego średnica. Informacje te wykorzystywane są następnie do określenia korekt narzędzia. Korekty wyznaczane są przy wykonywaniu ruchu pomiarowego i zapisane w pamięci kontrolera.

Przykładowe programy wykonawcze

• Initial – kasowanie błędów oraz inicjalizacja urządzenia Leoni

```
.PROGRAM Initial()
 tool no = 1
 COMM_TOOLCORRECT tool_no,0 ;Przejście w tryb gotowości
. END
```

```
;Kasowanie błędów
```

Vectorrun – 3-krotne wykonanie programu dblcircle top; określenie korekt dla współrzędnych bramki laserowej oraz robota.

```
.PROGRAM Vectorrun()
 your speed = SYSDATA(M.SPEED)
 MON SPEED 100
 SPEED 50 MM/S ALWAYS
 ACCURACY 3 ALWAYS
 LAPPRO #center,40
                                   ;Ruch do pozycji początkowej
 SET_TOOLCORRECT 0,zero, ON
SET_TOOLCORRECT 0,zero, ON
                                   ;Zerowanie korekcji
 ENA TOOLCORRECT 0, TRUE
                                   ;Aktywacja korekcji
 COMM TOOLCORRECT tool no,1
                                   ;Aktywacja pomiaru wektorowego
 CALL dblcircle top
                                    ;Wywołanie programu podwójnego
                                     okręqu
 GET TOOLCORRECT tool no, correction; Pobranie wartości korekcji
 SET TOOLCORRECT 0, correction, OFF ; Zapis wartości korekcji
 CALL dblcircle top
                                    ;Wywołanie programu podwójnego
                                      okręgu
 GET TOOLCORRECT tool no, correction ; Pobranie wartości korekcji
 SET TOOLCORRECT 0, correction, OFF ; Zapis wartości korekcji
 CALL dblcircle top
                                    ;Wywołanie programu podwójnego
                                      okręgu
 GET TOOLCORRECT tool no, correction ; Pobranie wartości korekcji
 SET TOOLCORRECT 0, correction, OFF ;Zapis wartości korekcji
 COMM TOOLCORRECT tool no,0
                                    ;Przejście w tryb gotowości
```


ENA_TOOLCORRECT 0, FALSE MON_SPEED your_speed .END ;Dezaktywacja korekcji

 Refrun5d – program wykonuje ruch i zapisuje dane o narzędziu w celu późniejszego porównania.

.PROGRAM refrun5d() your speed = SYSDATA(M.SPEED) MON SPEED 100 SPEED 50 MM/S ALWAYS ACCURACY 3 ALWAYS LAPPRO #center,40 ;Ruch do pozycji początkowej ;Zerowanie korekcji SET TOOLCORRECT 0, zero, ON SET_TOOLCORRECT 0, zero, ON ENA TOOLCORRECT 0, TRUE ;Aktywacja korekcji COMM TOOLCORRECT tool no,2 ;Aktywacja pomiaru odniesienia ;Wywołanie programu podwójnego CALL dblcircle top okręgu GET TOOLCORRECT tool no, correction ; Pobranie wartości korekcji SET TOOLCORRECT 0, correction, OFF ; Zapis wartości korekcji CALL dblcircle btm ;Wywołanie programu podwójnego okręgu ;Pobranie wartość korekcji(O,A,T) GET TOOLCORRECT tool no, correction SET TOOLCORRECT 0, correction, OFF ;Zapis wartość korekcji (O,A,T) CALL dblcircle top ;Wywołanie programu podwójnego okręqu GET TOOLCORRECT tool no, correction ;Pobranie wartość korekcji(X,Y) SET TOOLCORRECT 0, correction, OFF ;Zapis wartość korekcji (X,Y) CALL oscilation ;Wywołanie programu podwójnego okręgu GET TOOLCORRECT tool no, correction ; Pobranie wartość korekcji(Z) SET_TOOLCORRECT 0, correction, OFF; Zapis wartość korekcji (Z)COMM_TOOLCORRECT tool_no,0; Przejście w tryb gotowości ENA TOOLCORRECT 0, FALSE ;Dezaktywacja korekcji MON SPEED your speed

. END

Measrun – program korygujący położenie narzędzia

.PROGRAM measrun()

```
your_speed = SYSDATA(M.SPEED)
tool_no = 1
MON_SPEED 100
SPEED 50 MM/S ALWAYS
ACCURACY 3 ALWAYS
LAPPRO #center,30
SET_TOOLCORRECT 0,zero, ON
ENA_TOOLCORRECT 0,zero, ON
ENA_TOOLCORRECT 0,TRUE
;
COMM_TOOLCORRECT tool no,4
```

;Ruch do pozycji początkowej ;Zerowanie korekcji

```
;Aktywacja korekcji
;Aktywacja pomiaru
```



```
CALL dblcircle_top
```

GET_TOOLCORRECT tool_no,correction
SET_TOOLCORRECT 0,correction, OFF

```
CALL dblcircle btm
```

GET_TOOLCORRECT tool_no,correction SET_TOOLCORRECT 0,correction, OFF CALL dblcircle_top

```
GET_TOOLCORRECT tool_no,correction
SET_TOOLCORRECT 0,correction, OFF
CALL oscilation
GET_TOOLCORRECT tool_no,correction
SET_TOOLCORRECT 0,correction, OFF
COMM_TOOLCORRECT tool_no,0
ENA_TOOLCORRECT 0,FALSE
MON_SPEED your_speed
.END
```

```
;Wywołanie programu podwójnego
okrequ
; Pobranie wartość korekcji
;Zapis wartość korekcji
;Wywołanie programupodwójnego
okręgu
;Pobranie wartość korekcji(O,A,T)
;Zapis wartość korekcji (O,A,T)
;Wywołanie programu podwójnego
okręgu
;Pobranie wartości korekcji (X,Y)
;Zapis wartość korekcji (X,Y)
;Wywołanie programu oscylacji
;Pobranie wartości korekcji (Z)
;Zapis wartość korekcji (Z)
;Przejście w tryb gotowości
;Dezaktywacja korekcji
```

Dblcircle_top

.PROGRAM dblcircle_top()

```
SPEED 50 MM/S ALWAYS
ACCURACY 3 ALWAYS
MON SPEED 40
LMOVE TRANS(-radius,0,-lb_shift)+center
BREAK
MON SPEED 100
C1MOVE TRANS(0, -radius, -lb shift)+center
C1MOVE TRANS (radius, 0, -lb shift) +center
C1MOVE TRANS(0, radius, -lb shift) +center
C1MOVE TRANS (-radius, 0, -lb shift) +center
C1MOVE TRANS (0, -radius, -lb shift) +center
C1MOVE TRANS(radius, 0, -lb shift)+center
C1MOVE TRANS (0, radius, -lb shift) +center
C2MOVE TRANS(-radius,0,-lb shift)+center
BREAK
LMOVE TRANS (-radius, 0, -lb shift) +center
MON SPEED your speed
BREAK
```

```
. END
```

• Dblcircle_btm

.PROGRAM dblcircle_btm()

```
SPEED 50 MM/S ALWAYS
ACCURACY 3 ALWAYS
MON_SPEED 40
LMOVE TRANS(-radius,0,-lb_shift-ori_lenght)+center
BREAK
MON_SPEED 100
C1MOVE TRANS(0,-radius,-lb_shift-ori_lenght)+center
C1MOVE TRANS(radius,0,-lb_shift-ori_lenght)+center
C1MOVE TRANS(0,radius,-lb_shift-ori_lenght)+center
C1MOVE TRANS(-radius,0,-lb_shift-ori_lenght)+center
```



```
C1MOVE TRANS(0,-radius,-lb_shift-ori_lenght)+center
C1MOVE TRANS(radius,0,-lb_shift-ori_lenght)+center
C1MOVE TRANS(0,radius,-lb_shift-ori_lenght)+center
C2MOVE TRANS(-radius,0,-lb_shift-ori_lenght)+center
BREAK
LMOVE TRANS(-radius,0,-lb_shift-ori_lenght)+center
MON_SPEED your_speed
BREAK
.END
```

```
• Oscilation
```

```
.PROGRAM oscilation()
```

```
SPEED 50 MM/S ALWAYS
 ACCURACY 3 ALWAYS
 MON SPEED 40
 LMOVE TRANS (-radius) +center
 LMOVE TRANS(-radius,0,z lenght/2)+center
 MON SPEED 100
 ACCURACY 1 ALWAYS FINE
 SPEED 50 MM/S ALWAYS
 FOR .x = 1 TO 3
   LMOVE TRANS(0,0,z_lenght/2)+center
   LMOVE TRANS(0,0,-z_lenght/2)+center
 END
 LMOVE TRANS(0,0,z lenght/2)+center
 BREAK
 ACCURACY 3 ALWAYS
 LMOVE TRANS(-radius,0,z lenght/2)+center
 LMOVE TRANS (-radius) +center
 MON_SPEED your_speed
. END
```

• Zero

Punkt o współrzędnych (0,0,0,0,0,0) służy do zerowania wartości korekcji podczas pomiaru.

POINT zero = TRANS (0,0,0,0,0,0)